Goal

Recreate the descriptive statistics in the paper

Set up and data import

library(tidyverse)
library(data.table)
library(patchwork)
library(ggrepel)
library(viridis)

#data
load("results/riclpm/23-03-13_lavaan-main-results.Rdata")
load("results/riclpm/23-03-14_lavaan-moderation-results.Rdata")

Data preperation

Create plot data.

plot_data <- MyData %>% 
  select(nomem_encr, 
         starts_with("eu"),
         starts_with("cult"),
         starts_with("inc_diff"),
         starts_with("educ"),
         starts_with("poltalk_a")
         ) %>% 
  select(-starts_with("educ_dis"),
         -starts_with("educ_sim")) %>% 
  pivot_longer(cols = 2:166,
               names_to = c("measure", "wave"),
               names_pattern = "(.+)\\_(.+)",
               values_to = "value") %>% 
  pivot_wider(id_cols = c("nomem_encr", "wave"), 
              names_from = "measure",
              values_from = "value")

Descriptive statistics

Political Attitudes

Trend plot

#create time_cohort
plot_data <- plot_data %>%
  mutate(year = as.numeric(wave),
         year = ifelse(year == 1, 2008, year),
         year = ifelse(year == 2, 2009, year),
         year = ifelse(year == 3, 2010, year),
         year = ifelse(year == 4, 2011, year),
         year = ifelse(year == 5, 2012, year),
         year = ifelse(year == 6, 2013, year),
         year = ifelse(year == 7, 2014, year),
         year = ifelse(year == 8, 2016, year),
         year = ifelse(year == 9, 2017, year),
         year = ifelse(year == 10, 2018, year),
         year = ifelse(year == 11, 2019, year)) %>%
  mutate(educ_rec = ifelse(educ < 6, 6, educ))

#create plot DF
plot_attitudes <- list()

plot_attitudes[[1]] <- plot_data %>% 
  group_by(year) %>%
  summarise(mean = mean(eu, na.rm = T),
            n = sum(!is.na(eu)),
            se = 1.96 * (sd(eu, na.rm=T)/sqrt(sum(!is.na(eu)))),
            name = "EU integration")

plot_attitudes[[2]] <- plot_data %>% 
  group_by(year) %>%
  summarise(mean = mean(cult, na.rm = T),
            n = sum(!is.na(cult)),
            se = 1.96 * (sd(cult, na.rm=T)/sqrt(sum(!is.na(cult)))),
            name = "Cultural Inclusion")

plot_attitudes[[3]] <- plot_data %>% 
  group_by(year) %>%
  summarise(mean = mean(inc_diff, na.rm = T),
            n = sum(!is.na(inc_diff)),
            se = 1.96 * (sd(inc_diff, na.rm=T)/sqrt(sum(!is.na(inc_diff)))),
            name = "Income Equality")

plot_attitudes <- plot_attitudes %>%
  rbindlist()

#mean plot
trend_att <- plot_attitudes %>%
  ggplot(aes(x = year, y = mean, group = name)) +
  geom_line(aes(colour = name)) +
  geom_errorbar(aes(ymin = mean - se, 
                     ymax = mean + se,
                     colour = name),
                width = 0.1) +
  geom_point(aes(colour = name)) +
  scale_y_continuous(breaks = c(1, 1.5, 2, 2.5, 3, 3.5),
                     limits = c(1, 3.5)) +
  scale_x_continuous(breaks = c(2009:2019), name = element_blank()) + 
  scale_colour_viridis(option = "D", discrete = T) +
  labs(x = "Year", y = "Mean") +
  theme(
    plot.subtitle = element_text(
      size = rel(1.2),
      hjust = 0.5,
      margin = margin(0, 0, 20, 0)
    ),
    text = element_text(),
    plot.background = element_rect(fill = "#FFFFFF"),
    panel.background = element_rect(fill = "#FFFFFF"),
    panel.border = element_rect(
      fill = NA,
      color = "#FFFFFF",
      size = 0.5,
      linetype = "solid"
    ),
    axis.title = element_text(size = rel(1)),
    axis.title.y = element_text(angle = 90, vjust = 2),
    axis.title.x = element_text(vjust = -0.2),
    axis.text = element_text(),
    axis.text.x = element_text(angle = 45, vjust = 0.2),
    axis.line.x = element_blank(),
    axis.line.y = element_blank(),
    axis.ticks = element_line(),
    panel.grid.major = element_line(colour = "grey"),
    panel.grid.major.x  = element_blank(),
    panel.grid.minor = element_blank(),
    legend.position = "bottom",
    legend.direction = "horizontal",
    legend.box = "vertical",
    legend.title = element_blank(),
    strip.background = element_rect(colour = "#FFFFFF", fill = "#FFFFFF"),
    strip.text = element_text(face = "bold"),
    legend.key = element_rect(colour = "#FFFFFF", fill = "#FFFFFF")
  )

trend_att

ggsave(plot = trend_att, 
       filename = "plots/descriptives/trend_att.eps",
       dpi = 600,
       height = 4,
       width = 5)

#save bw version
#mean plot
trend_att_bw <- plot_attitudes %>%
  ggplot(aes(x = year, y = mean, group = name)) +
  geom_line(aes(colour = name)) +
  geom_errorbar(aes(ymin = mean - se, 
                     ymax = mean + se,
                     colour = name),
                width = 0.1) +
  geom_point(aes(colour = name)) +
  scale_y_continuous(breaks = c(1, 1.5, 2, 2.5, 3, 3.5),
                     limits = c(1, 3.5)) +
  scale_x_continuous(breaks = c(2009:2019), name = element_blank()) + 
  scale_colour_grey() +
  labs(x = "Year", y = "Mean") +
  theme(
    plot.subtitle = element_text(
      size = rel(1.2),
      hjust = 0.5,
      margin = margin(0, 0, 20, 0)
    ),
    text = element_text(),
    plot.background = element_rect(fill = "#FFFFFF"),
    panel.background = element_rect(fill = "#FFFFFF"),
    panel.border = element_rect(
      fill = NA,
      color = "#FFFFFF",
      size = 0.5,
      linetype = "solid"
    ),
    axis.title = element_text(size = rel(1)),
    axis.title.y = element_text(angle = 90, vjust = 2),
    axis.title.x = element_text(vjust = -0.2),
    axis.text = element_text(),
    axis.text.x = element_text(angle = 45, vjust = 0.2),
    axis.line.x = element_blank(),
    axis.line.y = element_blank(),
    axis.ticks = element_line(),
    panel.grid.major = element_line(colour = "grey"),
    panel.grid.major.x  = element_blank(),
    panel.grid.minor = element_blank(),
    legend.position = "bottom",
    legend.direction = "horizontal",
    legend.box = "vertical",
    legend.title = element_blank(),
    strip.background = element_rect(colour = "#FFFFFF", fill = "#FFFFFF"),
    strip.text = element_text(face = "bold"),
    legend.key = element_rect(colour = "#FFFFFF", fill = "#FFFFFF")
  )

ggsave(plot = trend_att_bw, 
       filename = "plots/descriptives/trend_att_bw.eps",
       dpi = 600,
       height = 4,
       width = 5)

Change scores heatmap

Datapreperation for heatmap

plot_data <- plot_data %>%
  group_by(nomem_encr) %>%
  mutate(wave = as.numeric(wave)) %>% 
  arrange(nomem_encr, wave) %>% 
  mutate(eu_change = eu - dplyr::lag(eu),
         eu_change = ifelse(eu_change > 2, 3, eu_change),
         eu_change = ifelse(eu_change < -2, -3, eu_change),
         cult_change = cult - dplyr::lag(cult),
         cult_change = ifelse(cult_change > 2, 3, cult_change),
         cult_change = ifelse(cult_change < -2, -3, cult_change),
         inc_change = inc_diff - dplyr::lag(inc_diff),
         inc_change = ifelse(inc_change > 2, 3, inc_change),
         inc_change = ifelse(inc_change < -2, -3, inc_change)
         ) %>%
  ungroup()

Heatmap plot

#create list to store the dfs in
plot_data_heatmap <- list()

#eu_change
plot_data_heatmap[[1]] <- plot_data %>%
  select(nomem_encr, eu_change, year) %>%
  filter(year > 2008) %>% #filter out the first year (no change scores possible)
  group_by(year) %>% #group by year
  count(eu_change) %>% #create counts per year of change values
  mutate(name = "EU Integration")  %>% #create identifier
  rename(change = eu_change) %>% #rename eu_change into change score
  ungroup()

#cult_change
plot_data_heatmap[[2]] <- plot_data %>%
  select(nomem_encr, cult_change, year) %>%
  filter(year > 2008) %>%
  group_by(year) %>%
  count(cult_change) %>%
  mutate(name = "Cultural Inclusion")  %>%
  rename(change = cult_change) %>%
  ungroup()

#inc_change
plot_data_heatmap[[3]] <- plot_data %>%
  select(nomem_encr, inc_change, year) %>%
  filter(year > 2008) %>%
  group_by(year) %>%
  count(inc_change) %>%
  mutate(name = "Income Equality")  %>%
  rename(change = inc_change) %>%
  ungroup()

plot_data_heatmap <- plot_data_heatmap %>%
  rbindlist() %>%
  filter(!is.na(change))

change_att_heatmap <- plot_data %>%
  count(year, name = "n_year") %>%
  right_join(plot_data_heatmap, by = "year") %>%
  group_by(year, name) %>%
  mutate(sum_n = sum(n)) %>%
  ungroup() %>%
  mutate(per_change = (n/sum_n)*100,
         change = factor(change, levels = -3:3, labels = c("-3 | -4", "-2", "-1", "0", "1", "2", "3 | 4"))) %>%
  ggplot(aes(x = as.factor(year), y = change, fill = per_change)) +
  geom_raster() +
  geom_text(aes(label = round(per_change, 1)),
            colour = "black",
            size = 5) +
  facet_wrap(vars(name)) + 
  labs(fill = "% yearly \n observations",y = expression(Delta*" Attitude"), x = "Year") +
  scale_fill_viridis(option = "D", limits = c(0,65)) +
 # scale_x_continuous(breaks = c(2009:2019), name = element_blank()) + 
  theme(axis.text.x = element_text(angle = 45, vjust = 0.2),
        plot.title = element_text(color="black",hjust=0,vjust=1, size=rel(2)),
    plot.background = element_rect(fill="#FFFFFF"),
    panel.background = element_rect(fill="#FFFFFF"),
    panel.border = element_rect(fill=NA,color="#FFFFFF", size=0.5, linetype="solid"),
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
    strip.text = element_text(face="bold", size=10,lineheight=5.0, colour = "black"),
    axis.line = element_blank(),
    axis.ticks = element_blank(), 
    axis.text = element_text(color="black"),
    axis.text.y  = element_text(hjust=1),
    legend.text = element_text(color="black", size=rel(1.3)),
    legend.background = element_rect(fill="#FFFFFF"),
    legend.position = "bottom",
    strip.background=element_rect(colour="#A9A9A9",fill="#A9A9A9"))

#show plot
change_att_heatmap

#save plot
ggsave(plot = change_att_heatmap, 
       filename = "plots/descriptives/heatmap_change_att.eps",
       dpi = 600, 
       height = 8, 
       width = 16)
#save bw version
change_att_heatmap_bw <-  plot_data %>%
  count(year, name = "n_year") %>%
  right_join(plot_data_heatmap, by = "year") %>%
  group_by(year, name) %>%
  mutate(sum_n = sum(n)) %>%
  ungroup() %>%
  mutate(
    per_change = (n / sum_n) * 100,
    change = factor(
      change,
      levels = -3:3,
      labels = c("-3 | -4", "-2", "-1", "0", "1", "2", "3 | 4")
    ),
    per_change_factor = cut(
      per_change,
      breaks = c(0,
                 10,
                 20,
                 30,
                 40,
                 50,
                 60,
                 70,
                 80,
                 90,
                 100)),
    per_change_factor = case_when(
      per_change_factor == "(0,10]" ~ "0-10%",
      per_change_factor == "(10,20]" ~ "10-20%",
      per_change_factor == "(20,30]" ~ "20-30%",
      per_change_factor == "(30,40]" ~ "30-40%",
      per_change_factor == "(40,50]" ~ "40-50%",
      per_change_factor == "(50,60]" ~ "50-60%",
      per_change_factor == "(60,70]" ~ "60-70%",
    )) %>%
  ggplot(aes(x = as.factor(year),
             y = change, 
             fill = per_change_factor)) +
  geom_raster(alpha = 0.8) +
  geom_text(aes(label = round(per_change, 1)),
            colour = "white",
            size = 5) +
  facet_wrap(vars(name)) + 
  labs(fill = "% yearly \n observations",y = expression(Delta*" Attitude"), x = "Year") +
  scale_fill_grey() +
 # scale_x_continuous(breaks = c(2009:2019), name = element_blank()) + 
  theme(axis.text.x = element_text(angle = 45, vjust = 0.2),
        plot.title = element_text(color="black",hjust=0,vjust=1, size=rel(2)),
    plot.background = element_rect(fill="#FFFFFF"),
    panel.background = element_rect(fill="#FFFFFF"),
    panel.border = element_rect(fill=NA,color="#FFFFFF", size=0.5, linetype="solid"),
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
    strip.text = element_text(face="bold", size=10,lineheight=5.0, colour = "black"),
    axis.line = element_blank(),
    axis.ticks = element_blank(), 
    axis.text = element_text(color="black"),
    axis.text.y  = element_text(hjust=1),
    legend.text = element_text(color="black", size=rel(1.3)),
    #legend.background = element_rect(fill="#FFFFFF"),
    legend.position = "bottom",
    strip.background=element_rect(colour="#A9A9A9",fill="#A9A9A9"))

change_att_heatmap_bw

ggsave(plot = change_att_heatmap_bw, 
       filename = "plots/descriptives/heatmap_change_bw_att.pdf",
       dpi = 300, 
       height = 8, 
       width = 16)

CDN network changes

#create mean for education and political discussion
plot_data <- plot_data %>%
  rowwise() %>%
  mutate(cdn_educ = mean(c_across(starts_with("educ_a")), na.rm = T),
         cdn_pol = mean(c_across(starts_with("poltalk_a")), na.rm = T)) %>%
  ungroup()

Trend plot

#create list to store information. 
cdn_trend <- list()

#create plot df for education
cdn_trend[[1]] <- plot_data %>%
  group_by(year) %>%
  summarise(mean = mean(cdn_educ, na.rm = T),
            se = 1.96 * (sd(cdn_educ, na.rm=T)/sqrt(sum(!is.na(cdn_educ)))),
            name = "Education") %>% 
  ungroup()

#create plot df for political discussion. 
cdn_trend[[2]] <- plot_data %>%
  group_by(year) %>%
  summarise(mean = mean(cdn_pol, na.rm = T),
            se = 1.96 * (sd(cdn_pol, na.rm=T)/sqrt(sum(!is.na(cdn_pol)))),
            name = "Political Discussion") %>% 
  ungroup()

#create educ trend plot
cdn_educ_trend <- cdn_trend %>%
  bind_rows() %>%
  filter(name == "Education") %>%
  ggplot(aes(x = as.numeric(year), y = mean)) +
  geom_point() +
  geom_line() +
  geom_errorbar(aes(ymin = mean - se, ymax = mean + se), width = .1) +
  scale_y_continuous(breaks = 10:14, limits = c(10,14)) +
  scale_x_continuous(breaks = c(2008:2019), name = element_blank()) + 
  labs(y = "Years") +
  theme(
    plot.subtitle = element_text(
      size = rel(1.2),
      hjust = 0.5,
      margin = margin(0, 0, 20, 0)
    ),
    text = element_text(),
    plot.background = element_rect(fill = "#FFFFFF"),
    panel.background = element_rect(fill = "#FFFFFF"),
    panel.border = element_rect(
      fill = NA,
      color = "#FFFFFF",
      size = 0.5,
      linetype = "solid"
    ),
    axis.title = element_text(size = rel(1)),
    axis.title.y = element_text(angle = 90, vjust = 2),
    axis.title.x = element_text(vjust = -0.2),
    axis.text = element_text(),
    axis.text.x = element_text(angle = 45, vjust = 0.2),
    axis.line.x = element_blank(),
    axis.line.y = element_blank(),
    axis.ticks = element_line(),
    panel.grid.major = element_line(colour = "grey"),
    panel.grid.major.x  = element_blank(),
    panel.grid.minor = element_blank(),
    legend.position = "bottom",
    legend.direction = "horizontal",
    legend.box = "vertical",
    legend.title = element_blank(),
    strip.background = element_rect(colour = "#FFFFFF", fill = "#FFFFFF"),
    strip.text = element_text(face = "bold"),
    legend.key = element_rect(colour = "#FFFFFF", fill = "#FFFFFF")
  )

#save trend plot
ggsave(plot = cdn_educ_trend, 
       filename = "plots/descriptives/cdn_educ_trend.eps", 
       dpi = 600, 
       height = 4, 
       width = 4)

Changes heatmap plot

#create plot data
plot_data <- plot_data %>%
  group_by(nomem_encr) %>%
  mutate(educ_change = cdn_educ - dplyr::lag(cdn_educ),
         pol_change = cdn_pol - dplyr::lag(cdn_pol),
         ) %>%
  ungroup() %>%
  mutate(educ_change_rec = ifelse(educ_change < -5, 1, educ_change),
         educ_change_rec = ifelse((educ_change < -4) & (educ_change >= -5), 2, educ_change_rec),
         educ_change_rec = ifelse((educ_change < -3) & (educ_change >= -4), 3, educ_change_rec),
         educ_change_rec = ifelse((educ_change < -2) & (educ_change >= -3), 4, educ_change_rec),
         educ_change_rec = ifelse((educ_change < -1) & (educ_change >= -2), 5, educ_change_rec),
         educ_change_rec = ifelse((educ_change < 0) & (educ_change >= -1), 6, educ_change_rec),
         educ_change_rec = ifelse((educ_change < 1) & (educ_change >= 0), 7, educ_change_rec),
         educ_change_rec = ifelse((educ_change < 2) & (educ_change >= 1), 8, educ_change_rec),
         educ_change_rec = ifelse((educ_change < 3) & (educ_change >= 2), 9, educ_change_rec),
         educ_change_rec = ifelse((educ_change < 4) & (educ_change >= 3), 10, educ_change_rec),
         educ_change_rec = ifelse((educ_change < 5) & (educ_change >= 4), 11, educ_change_rec),
         educ_change_rec = ifelse(educ_change > 5, 12, educ_change_rec),
         educ_change_rec = factor(educ_change_rec, levels = 1:12, labels = c("<-5", "-4/-5", "-3/-4","-2/-3",
                                                                             "-1/-2", "0/-1", "0/1", "1/2",
                                                                             "2/3", "3/4", "4/5", ">5")
                                                                             ),
         pol_change_rec = ifelse(pol_change < -5, 1, pol_change),
         pol_change_rec = ifelse((pol_change < -4) & (pol_change >= -5), 2, pol_change_rec),
         pol_change_rec = ifelse((pol_change < -3) & (pol_change >= -4), 3, pol_change_rec),
         pol_change_rec = ifelse((pol_change < -2) & (pol_change >= -3), 4, pol_change_rec),
         pol_change_rec = ifelse((pol_change < -1) & (pol_change >= -2), 5, pol_change_rec),
         pol_change_rec = ifelse((pol_change < 0) & (pol_change >= -1), 6, pol_change_rec),
         pol_change_rec = ifelse((pol_change < 1) & (pol_change >= 0), 7, pol_change_rec),
         pol_change_rec = ifelse((pol_change < 2) & (pol_change >= 1), 8, pol_change_rec),
         pol_change_rec = ifelse((pol_change < 3) & (pol_change >= 2), 9, pol_change_rec),
         pol_change_rec = ifelse((pol_change < 4) & (pol_change >= 3), 10, pol_change_rec),
         pol_change_rec = ifelse((pol_change < 5) & (pol_change >= 4), 11, pol_change_rec),
         pol_change_rec = ifelse(pol_change > 5, 12, pol_change_rec),
         pol_change_rec = factor(pol_change_rec, levels = 1:12, labels = c("<-5", "-4/-5", "-3/-4","-2/-3",
                                                                             "-1/-2", "0/-1", "0/1", "1/2",
                                                                             "2/3", "3/4", "4/5", ">5")
                                                                             ))
#create list to store the dfs in
plot_data_cdn_heatmap <- list()

#CDN Education
plot_data_cdn_heatmap[[1]] <- plot_data %>%
  select(nomem_encr, educ_change_rec, year) %>%
  filter(year > 2008) %>% #filter out the first year (no change scores possible)
  group_by(year) %>% #group by year
  count(educ_change_rec) %>% #create counts per year of change values
  mutate(name = "CDN Education")  %>% #create identifier
  rename(change = educ_change_rec) %>% #rename eu_change into change score
  ungroup()

#CDN Political discussion
plot_data_cdn_heatmap[[2]] <- plot_data %>%
  select(nomem_encr, pol_change_rec, year) %>%
  filter(year > 2008) %>%
  group_by(year) %>%
  count(pol_change_rec) %>%
  mutate(name = "CDN Political discussion")  %>%
  rename(change = pol_change_rec) %>%
  ungroup()

#combine plot data into one file
plot_data_cdn_heatmap <- plot_data_cdn_heatmap %>%
  rbindlist() %>%
  filter(!is.na(change))

#create heatmap
change_cdn_heatmap <- plot_data %>%
  count(year, name = "n_year") %>%
  right_join(plot_data_cdn_heatmap, by = "year") %>%
  filter(name == "CDN Education") %>%
  group_by(year) %>%
  mutate(sum_n = sum(n)) %>%
  ungroup() %>%
  mutate(per_change = (n/sum_n)*100) %>%
  ggplot(aes(x = as.factor(year), y = change, fill = per_change)) +
  geom_raster() +
  geom_text(aes(label = round(per_change, 1)), colour = "black") +
  labs(fill = "% of yearly observations",y = expression(Delta)) +
  scale_fill_viridis(option = "D") +
  scale_x_discrete(name = element_blank()) + 
  theme(axis.text.x = element_text(angle = 45, vjust = 0.2),
        plot.title = element_text(color="black",hjust=0,vjust=1, size=rel(2)),
    plot.background = element_rect(fill="#FFFFFF"),
    panel.background = element_rect(fill="#FFFFFF"),
    panel.border = element_rect(fill=NA,color="#FFFFFF", size=0.5, linetype="solid"),
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
    strip.text = element_text(face="bold", size=10,lineheight=5.0, colour = "black"),
    strip.background = element_rect(fill="#FFFFFF", colour="#808080", size=1),
    axis.line = element_blank(),
    axis.ticks = element_blank(), 
    axis.text = element_text(color="black"),
    axis.text.y  = element_text(hjust=1),
    legend.text = element_text(color="black", size=rel(1.3)),
    legend.background = element_rect(fill="#FFFFFF"),
    legend.position = "bottom")

#show plot
change_cdn_heatmap

#save plot
ggsave(plot = change_cdn_heatmap, 
       filename = "plots/descriptives/heatmap_change_cdn.eps", 
       dpi = 600, 
       height = 6, 
       width = 6)
#create bw version
#create heatmap
change_cdn_heatmap_bw <- plot_data %>%
  count(year, name = "n_year") %>%
  right_join(plot_data_cdn_heatmap, by = "year") %>%
  filter(name == "CDN Education") %>%
  group_by(year) %>%
  mutate(sum_n = sum(n)) %>%
  ungroup() %>%
mutate(
    per_change = (n / sum_n) * 100,
    per_change_factor = cut(
      per_change,
      breaks = c(0,
                 10,
                 20,
                 30,
                 40,
                 50,
                 60,
                 70,
                 80,
                 90,
                 100)),
    per_change_factor = case_when(
      per_change_factor == "(0,10]" ~ "0-10%",
      per_change_factor == "(10,20]" ~ "10-20%",
      per_change_factor == "(20,30]" ~ "20-30%",
      per_change_factor == "(30,40]" ~ "30-40%",
      per_change_factor == "(40,50]" ~ "40-50%",
      per_change_factor == "(50,60]" ~ "50-60%",
      per_change_factor == "(60,70]" ~ "60-70%",
    )) %>%
  ggplot(aes(x = as.factor(year),
             y = change, 
             fill = per_change_factor)) +
  geom_raster(alpha = 0.8) +
  geom_text(aes(label = round(per_change, 1)), colour = "white") +
  labs(fill = "% yearly \n observations",y = expression(Delta*" Attitude"), x = "Year") +
  scale_fill_grey() +
  scale_x_discrete(name = element_blank()) + 
  theme(axis.text.x = element_text(angle = 45, vjust = 0.2),
        plot.title = element_text(color="black",hjust=0,vjust=1, size=rel(2)),
    plot.background = element_rect(fill="#FFFFFF"),
    panel.background = element_rect(fill="#FFFFFF"),
    panel.border = element_rect(fill=NA,color="#FFFFFF", size=0.5, linetype="solid"),
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
    strip.text = element_text(face="bold", size=10,lineheight=5.0, colour = "black"),
    strip.background = element_rect(fill="#FFFFFF", colour="#808080", size=1),
    axis.line = element_blank(),
    axis.ticks = element_blank(), 
    axis.text = element_text(color="black"),
    axis.text.y  = element_text(hjust=1),
    legend.text = element_text(color="black", size=rel(1.3)),
    legend.background = element_rect(fill="#FFFFFF"),
    legend.position = "bottom")

#show plot
change_cdn_heatmap_bw

#save plot
ggsave(plot = change_cdn_heatmap_bw, 
       filename = "plots/descriptives/heatmap_change_cdn_bw.eps", 
       dpi = 600, 
       height = 6, 
       width = 6)

#save plot
ggsave(plot = change_cdn_heatmap_bw, 
       filename = "plots/descriptives/heatmap_change_cdn_bw.pdf", 
       dpi = 300, 
       height = 6, 
       width = 7)

#show plot
change_cdn_heatmap_bw



Copyright © 2024 Jeroense Thijmen