#load packages
library(dplyr)
library(purrr)
library(tidyr)
library(tidyselect)
library(haven)
library(magrittr)
Import the merged datafiles
load(file = file.path("data",
"data-processed",
"liss_merged",
"liss_merged_raw.Rdata"))
We can use the month of datacollection to see whether someone has participated in a specific year/module combination if someone has an an NA they did not participate in it. To surmise, we want people who participated in the CDN module and also in the politics and values waves.
# Let's create a filter of people who participated in at least one of these.
#first create a leisure and integration NA variable.
#first create a subset of the data, so we can use rowwise to create a selection id.
subset1 <- liss %>%
rowwise() %>%
#create filter variable
mutate(na_lei_int = sum(is.na(
c(
cs08a_m,
cs09b_m,
cs10c_m,
cs11d_m,
cs12e_m,
cs13f_m,
cs14g_m,
cs15h_m,
cs16i_m,
cs17j_m,
cs18k_m
)
))) %>%
#use only the observations that have participated in at least one wave of the leisure and integration data. We can of course change this later on.
filter(na_lei_int < 11) %>%
ungroup()
#we go from 25306 cases to 14473 cases.
#second create a pol val NA variable.
#filter out respondents who did not participate in any of the 11 waves.
liss_subset <- subset1 %>%
rowwise() %>%
mutate(na_pol_val = sum(is.na(
c(
cv08a_m,
cv09b_m,
cv10c_m,
cv11d_m,
cv12e_m,
cv13f_m,
cv14g_m,
cv17i_m,
cv18j_m1,
cv18j_m2,
cv18j_m3,
cv19k_m1,
cv19k_m2,
cv19k_m3
)
))) %>%
filter(na_pol_val < 14) %>% #now it is 14, due the weird coding in 18/19.
ungroup()
#we go from 14473 cases to 13273 cases. We will work with this liss_subset dataframe.
Goal: create subset of all the data that I want for every wave. Then we can make a new file where we only have the selected variables that we need for our analyses.
#liss politics variables that I need
liss_pol <- liss_subset %>%
select(
nomem_encr,
cv08a012,
cv08a047,
cv08a048,
cv08a049,
cv08a050,
cv08a051,
cv08a052,
cv08a058,
cv08a101,
cv08a102,
cv08a103,
cv08a104,
cv08a105,
cv08a001,
cv08a044,
cv08a014,
cv08a106,
cv08a107,
cv08a108,
cv08a109,
cv08a110,
cv08a111,
cv08a112,
cv08a113,
cv08a114,
cv08a115,
cv08a116,
cv08a117,
cv08a118,
cv08a119,
cv08a120,
cv08a121,
cv08a122,
cv08a123,
cv09b012,
cv09b047,
cv09b048,
cv09b049,
cv09b050,
cv09b051,
cv09b052,
cv09b058,
cv09b101,
cv09b102,
cv09b103,
cv09b104,
cv09b105,
cv09b001,
cv09b044,
cv09b014,
cv09b106,
cv09b107,
cv09b108,
cv09b109,
cv09b110,
cv09b111,
cv09b112,
cv09b113,
cv09b114,
cv09b115,
cv09b116,
cv09b117,
cv09b118,
cv09b119,
cv09b120,
cv09b121,
cv09b122,
cv09b123,
cv10c012,
cv10c047,
cv10c048,
cv10c049,
cv10c050,
cv10c051,
cv10c052,
cv10c058,
cv10c101,
cv10c102,
cv10c103,
cv10c104,
cv10c105,
cv10c001,
cv10c044,
cv10c014,
cv10c106,
cv10c107,
cv10c108,
cv10c109,
cv10c110,
cv10c111,
cv10c112,
cv10c113,
cv10c114,
cv10c115,
cv10c116,
cv10c117,
cv10c118,
cv10c119,
cv10c120,
cv10c121,
cv10c122,
cv10c123,
cv11d012,
cv11d047,
cv11d048,
cv11d049,
cv11d050,
cv11d051,
cv11d052,
cv11d171,
cv11d101,
cv11d102,
cv11d103,
cv11d104,
cv11d105,
cv11d001,
cv11d044,
cv11d014,
cv11d106,
cv11d107,
cv11d108,
cv11d109,
cv11d110,
cv11d111,
cv11d112,
cv11d113,
cv11d114,
cv11d115,
cv11d116,
cv11d117,
cv11d118,
cv11d119,
cv11d120,
cv11d121,
cv11d122,
cv11d123,
cv12e012,
cv12e047,
cv12e048,
cv12e049,
cv12e050,
cv12e051,
cv12e052,
cv12e171,
cv12e101,
cv12e102,
cv12e103,
cv12e104,
cv12e105,
cv12e001,
cv12e044,
cv12e014,
cv12e106,
cv12e107,
cv12e108,
cv12e109,
cv12e110,
cv12e111,
cv12e112,
cv12e113,
cv12e114,
cv12e115,
cv12e116,
cv12e117,
cv12e118,
cv12e119,
cv12e120,
cv12e121,
cv12e122,
cv12e123,
cv13f012,
cv13f047,
cv13f048,
cv13f049,
cv13f050,
cv13f051,
cv13f052,
cv13f209,
cv13f101,
cv13f102,
cv13f103,
cv13f104,
cv13f105,
cv13f001,
cv13f044,
cv13f014,
cv13f106,
cv13f107,
cv13f108,
cv13f109,
cv13f110,
cv13f111,
cv13f112,
cv13f113,
cv13f114,
cv13f115,
cv13f116,
cv13f117,
cv13f118,
cv13f119,
cv13f120,
cv13f121,
cv13f122,
cv13f123,
cv14g012,
cv14g047,
cv14g048,
cv14g049,
cv14g050,
cv14g051,
cv14g052,
cv14g209,
cv14g101,
cv14g102,
cv14g103,
cv14g104,
cv14g105,
cv14g001,
cv14g044,
cv14g014,
cv14g106,
cv14g107,
cv14g108,
cv14g109,
cv14g110,
cv14g111,
cv14g112,
cv14g113,
cv14g114,
cv14g115,
cv14g116,
cv14g117,
cv14g118,
cv14g119,
cv14g120,
cv14g121,
cv14g122,
cv14g123,
cv16h012,
cv16h047,
cv16h048,
cv16h049,
cv16h050,
cv16h051,
cv16h052,
cv16h209,
cv16h101,
cv16h102,
cv16h103,
cv16h104,
cv16h105,
cv16h001,
cv16h044,
cv16h014,
cv16h106,
cv16h107,
cv16h108,
cv16h109,
cv16h110,
cv16h111,
cv16h112,
cv16h113,
cv16h114,
cv16h115,
cv16h116,
cv16h117,
cv16h118,
cv16h119,
cv16h120,
cv16h121,
cv16h122,
cv16h123,
cv17i012,
cv17i047,
cv17i048,
cv17i049,
cv17i050,
cv17i051,
cv17i052,
cv17i244,
cv17i101,
cv17i102,
cv17i103,
cv17i104,
cv17i105,
cv17i001,
cv17i044,
cv17i014,
cv17i106,
cv17i107,
cv17i108,
cv17i109,
cv17i110,
cv17i111,
cv17i112,
cv17i113,
cv17i114,
cv17i115,
cv17i116,
cv17i117,
cv17i118,
cv17i119,
cv17i120,
cv17i121,
cv17i122,
cv17i123,
cv18j012,
cv18j047,
cv18j048,
cv18j049,
cv18j050,
cv18j051,
cv18j052,
cv18j243,
cv18j101,
cv18j102,
cv18j103,
cv18j104,
cv18j105,
cv18j001,
cv18j044,
cv18j014,
cv18j106,
cv18j107,
cv18j108,
cv18j109,
cv18j110,
cv18j111,
cv18j112,
cv18j113,
cv18j114,
cv18j115,
cv18j116,
cv18j117,
cv18j118,
cv18j119,
cv18j120,
cv18j121,
cv18j122,
cv18j123,
cv19k012,
cv19k047,
cv19k048,
cv19k049,
cv19k050,
cv19k051,
cv19k052,
cv19k243,
cv19k101,
cv19k102,
cv19k103,
cv19k104,
cv19k105,
cv19k001,
cv19k044,
cv19k014,
cv19k106,
cv19k107,
cv19k108,
cv19k109,
cv19k110,
cv19k111,
cv19k112,
cv19k113,
cv19k114,
cv19k115,
cv19k116,
cv19k117,
cv19k118,
cv19k119,
cv19k120,
cv19k121,
cv19k122,
cv19k123
)
#change names.
names(liss_pol) <-
c(
"nomem_encr",
"pol_int.1" ,
"parl_donot_care.1" ,
"pol_part_int.1" ,
"no_influece.1" ,
"cap_act_pol.1" ,
"clear_picture.1" ,
"pol_compl.1" ,
"vote_int.1" ,
"lr_scale.1" ,
"euthanasia.1" ,
"income_diff.1" ,
"immigrants.1",
"eu_integration.1" ,
"gov_sat.1",
"satdem.1",
"poltrust.1",
"postmatfirst.1",
"postmatsecond.1",
"postmatthird.1",
"workingmother.1",
"childjobmother.1",
"fulltimemother.1",
"equalcontribution.1",
"fatherworks.1",
"fatherhousehold.1",
"fatherschildcare.1",
"differentculture.1",
"foreignerculture.1",
"asylum.1",
"foreignsocsec.1",
"toomanyforeigners.1",
"foreignnotaccepted.1",
"foreigneconomy.1",
"neighborhood.1",
"pol_int.2" ,
"parl_donot_care.2" ,
"pol_part_int.2" ,
"no_influece.2" ,
"cap_act_pol.2" ,
"clear_picture.2" ,
"pol_compl.2" ,
"vote_int.2" ,
"lr_scale.2" ,
"euthanasia.2" ,
"income_diff.2" ,
"immigrants.2" ,
"eu_integration.2" ,
"gov_sat.2",
"satdem.2",
"poltrust.2",
"postmatfirst.2",
"postmatsecond.2",
"postmatthird.2",
"workingmother.2",
"childjobmother.2",
"fulltimemother.2",
"equalcontribution.2",
"fatherworks.2",
"fatherhousehold.2",
"fatherschildcare.2",
"differentculture.2",
"foreignerculture.2",
"asylum.2",
"foreignsocsec.2",
"toomanyforeigners.2",
"foreignnotaccepted.2",
"foreigneconomy.2",
"neighborhood.2",
"pol_int.3" ,
"parl_donot_care.3" ,
"pol_part_int.3" ,
"no_influece.3" ,
"cap_act_pol.3" ,
"clear_picture.3" ,
"pol_compl.3" ,
"vote_int.3" ,
"lr_scale.3" ,
"euthanasia.3" ,
"income_diff.3" ,
"immigrants.3" ,
"eu_integration.3" ,
"gov_sat.3",
"satdem.3",
"poltrust.3",
"postmatfirst.3",
"postmatsecond.3",
"postmatthird.3",
"workingmother.3",
"childjobmother.3",
"fulltimemother.3",
"equalcontribution.3",
"fatherworks.3",
"fatherhousehold.3",
"fatherschildcare.3",
"differentculture.3",
"foreignerculture.3",
"asylum.3",
"foreignsocsec.3",
"toomanyforeigners.3",
"foreignnotaccepted.3",
"foreigneconomy.3",
"neighborhood.3",
"pol_int.4" ,
"parl_donot_care.4" ,
"pol_part_int.4" ,
"no_influece.4" ,
"cap_act_pol.4" ,
"clear_picture.4" ,
"pol_compl.4" ,
"vote_int.4" ,
"lr_scale.4" ,
"euthanasia.4" ,
"income_diff.4" ,
"immigrants.4" ,
"eu_integration.4" ,
"gov_sat.4",
"satdem.4",
"poltrust.4",
"postmatfirst.4",
"postmatsecond.4",
"postmatthird.4",
"workingmother.4",
"childjobmother.4",
"fulltimemother.4",
"equalcontribution.4",
"fatherworks.4",
"fatherhousehold.4",
"fatherschildcare.4",
"differentculture.4",
"foreignerculture.4",
"asylum.4",
"foreignsocsec.4",
"toomanyforeigners.4",
"foreignnotaccepted.4",
"foreigneconomy.4",
"neighborhood.4",
"pol_int.5" ,
"parl_donot_care.5" ,
"pol_part_int.5" ,
"no_influece.5" ,
"cap_act_pol.5" ,
"clear_picture.5" ,
"pol_compl.5" ,
"vote_int.5" ,
"lr_scale.5" ,
"euthanasia.5" ,
"income_diff.5" ,
"immigrants.5" ,
"eu_integration.5" ,
"gov_sat.5",
"satdem.5",
"poltrust.5",
"postmatfirst.5",
"postmatsecond.5",
"postmatthird.5",
"workingmother.5",
"childjobmother.5",
"fulltimemother.5",
"equalcontribution.5",
"fatherworks.5",
"fatherhousehold.5",
"fatherschildcare.5",
"differentculture.5",
"foreignerculture.5",
"asylum.5",
"foreignsocsec.5",
"toomanyforeigners.5",
"foreignnotaccepted.5",
"foreigneconomy.5",
"neighborhood.5",
"pol_int.6" ,
"parl_donot_care.6" ,
"pol_part_int.6" ,
"no_influece.6" ,
"cap_act_pol.6" ,
"clear_picture.6" ,
"pol_compl.6" ,
"vote_int.6" ,
"lr_scale.6" ,
"euthanasia.6" ,
"income_diff.6" ,
"immigrants.6" ,
"eu_integration.6" ,
"gov_sat.6",
"satdem.6",
"poltrust.6",
"postmatfirst.6",
"postmatsecond.6",
"postmatthird.6",
"workingmother.6",
"childjobmother.6",
"fulltimemother.6",
"equalcontribution.6",
"fatherworks.6",
"fatherhousehold.6",
"fatherschildcare.6",
"differentculture.6",
"foreignerculture.6",
"asylum.6",
"foreignsocsec.6",
"toomanyforeigners.6",
"foreignnotaccepted.6",
"foreigneconomy.6",
"neighborhood.6",
"pol_int.7" ,
"parl_donot_care.7" ,
"pol_part_int.7" ,
"no_influece.7" ,
"cap_act_pol.7" ,
"clear_picture.7" ,
"pol_compl.7" ,
"vote_int.7" ,
"lr_scale.7" ,
"euthanasia.7" ,
"income_diff.7" ,
"immigrants.7" ,
"eu_integration.7" ,
"gov_sat.7",
"satdem.7",
"poltrust.7",
"postmatfirst.7",
"postmatsecond.7",
"postmatthird.7",
"workingmother.7",
"childjobmother.7",
"fulltimemother.7",
"equalcontribution.7",
"fatherworks.7",
"fatherhousehold.7",
"fatherschildcare.7",
"differentculture.7",
"foreignerculture.7",
"asylum.7",
"foreignsocsec.7",
"toomanyforeigners.7",
"foreignnotaccepted.7",
"foreigneconomy.7",
"neighborhood.7",
"pol_int.8" ,
"parl_donot_care.8" ,
"pol_part_int.8" ,
"no_influece.8" ,
"cap_act_pol.8" ,
"clear_picture.8" ,
"pol_compl.8" ,
"vote_int.8" ,
"lr_scale.8" ,
"euthanasia.8" ,
"income_diff.8" ,
"immigrants.8" ,
"eu_integration.8" ,
"gov_sat.8",
"satdem.8",
"poltrust.8",
"postmatfirst.8",
"postmatsecond.8",
"postmatthird.8",
"workingmother.8",
"childjobmother.8",
"fulltimemother.8",
"equalcontribution.8",
"fatherworks.8",
"fatherhousehold.8",
"fatherschildcare.8",
"differentculture.8",
"foreignerculture.8",
"asylum.8",
"foreignsocsec.8",
"toomanyforeigners.8",
"foreignnotaccepted.8",
"foreigneconomy.8",
"neighborhood.8",
"pol_int.9" ,
"parl_donot_care.9" ,
"pol_part_int.9" ,
"no_influece.9" ,
"cap_act_pol.9" ,
"clear_picture.9" ,
"pol_compl.9" ,
"vote_int.9" ,
"lr_scale.9" ,
"euthanasia.9" ,
"income_diff.9" ,
"immigrants.9" ,
"eu_integration.9",
"gov_sat.9",
"satdem.9",
"poltrust.9",
"postmatfirst.9",
"postmatsecond.9",
"postmatthird.9",
"workingmother.9",
"childjobmother.9",
"fulltimemother.9",
"equalcontribution.9",
"fatherworks.9",
"fatherhousehold.9",
"fatherschildcare.9",
"differentculture.9",
"foreignerculture.9",
"asylum.9",
"foreignsocsec.9",
"toomanyforeigners.9",
"foreignnotaccepted.9",
"foreigneconomy.9",
"neighborhood.9",
"pol_int.10" ,
"parl_donot_care.10" ,
"pol_part_int.10" ,
"no_influece.10" ,
"cap_act_pol.10" ,
"clear_picture.10" ,
"pol_compl.10" ,
"vote_int.10" ,
"lr_scale.10" ,
"euthanasia.10" ,
"income_diff.10" ,
"immigrants.10" ,
"eu_integration.10",
"gov_sat.10",
"satdem.10",
"poltrust.10",
"postmatfirst.10",
"postmatsecond.10",
"postmatthird.10",
"workingmother.10",
"childjobmother.10",
"fulltimemother.10",
"equalcontribution.10",
"fatherworks.10",
"fatherhousehold.10",
"fatherschildcare.10",
"differentculture.10",
"foreignerculture.10",
"asylum.10",
"foreignsocsec.10",
"toomanyforeigners.10",
"foreignnotaccepted.10",
"foreigneconomy.10",
"neighborhood.10",
"pol_int.11" ,
"parl_donot_care.11" ,
"pol_part_int.11" ,
"no_influece.11" ,
"cap_act_pol.11" ,
"clear_picture.11" ,
"pol_compl.11" ,
"vote_int.11" ,
"lr_scale.11" ,
"euthanasia.11" ,
"income_diff.11" ,
"immigrants.11" ,
"eu_integration.11",
"gov_sat.11",
"satdem.11",
"poltrust.11",
"postmatfirst.11",
"postmatsecond.11",
"postmatthird.11",
"workingmother.11",
"childjobmother.11",
"fulltimemother.11",
"equalcontribution.11",
"fatherworks.11",
"fatherhousehold.11",
"fatherschildcare.11",
"differentculture.11",
"foreignerculture.11",
"asylum.11",
"foreignsocsec.11",
"toomanyforeigners.11",
"foreignnotaccepted.11",
"foreigneconomy.11",
"neighborhood.11"
)
#get the background data and rename the columns.
liss_avars <- liss_subset %>%
select(
nomem_encr,
geslacht.1,
positie.1,
gebjaar.1,
leeftijd.1,
lftdcat.1,
aantalhh.1,
aantalki.1,
partner.1,
burgstat.1,
woonvorm.1,
woning.1,
sted.1,
belbezig.1,
brutoink.1,
nettoink.1,
brutocat.1,
nettocat.1,
oplzon.1,
oplmet.1,
oplcat.1,
nohouse_encr.1,
geslacht.2,
positie.2,
gebjaar.2,
leeftijd.2,
lftdcat.2,
aantalhh.2,
aantalki.2,
partner.2,
burgstat.2,
woonvorm.2,
woning.2,
sted.2,
belbezig.2,
brutoink.2,
nettoink.2,
brutocat.2,
nettocat.2,
oplzon.2,
oplmet.2,
oplcat.2,
nohouse_encr.2,
geslacht.3,
positie.3,
gebjaar.3,
leeftijd.3,
lftdcat.3,
aantalhh.3,
aantalki.3,
partner.3,
burgstat.3,
woonvorm.3,
woning.3,
sted.3,
belbezig.3,
brutoink.3,
nettoink.3,
brutocat.3,
nettocat.3,
oplzon.3,
oplmet.3,
oplcat.3,
nohouse_encr.3,
geslacht.4,
positie.4,
gebjaar.4,
leeftijd.4,
lftdcat.4,
aantalhh.4,
aantalki.4,
partner.4,
burgstat.4,
woonvorm.4,
woning.4,
sted.4,
belbezig.4,
brutoink.4,
nettoink.4,
brutocat.4,
nettocat.4,
oplzon.4,
oplmet.4,
oplcat.4,
nohouse_encr.4,
geslacht.5,
positie.5,
gebjaar.5,
leeftijd.5,
lftdcat.5,
aantalhh.5,
aantalki.5,
partner.5,
burgstat.5,
woonvorm.5,
woning.5,
sted.5,
belbezig.5,
brutoink.5,
nettoink.5,
brutocat.5,
nettocat.5,
oplzon.5,
oplmet.5,
oplcat.5,
nohouse_encr.5,
geslacht.6,
positie.6,
gebjaar.6,
leeftijd.6,
lftdcat.6,
aantalhh.6,
aantalki.6,
partner.6,
burgstat.6,
woonvorm.6,
woning.6,
sted.6,
belbezig.6,
brutoink.6,
nettoink.6,
brutocat.6,
nettocat.6,
oplzon.6,
oplmet.6,
oplcat.6,
nohouse_encr.6,
geslacht.7,
positie.7,
gebjaar.7,
leeftijd.7,
lftdcat.7,
aantalhh.7,
aantalki.7,
partner.7,
burgstat.7,
woonvorm.7,
woning.7,
sted.7,
belbezig.7,
brutoink.7,
nettoink.7,
brutocat.7,
nettocat.7,
oplzon.7,
oplmet.7,
oplcat.7,
nohouse_encr.7,
geslacht.8,
positie.8,
gebjaar.8,
leeftijd.8,
lftdcat.8,
aantalhh.8,
aantalki.8,
partner.8,
burgstat.8,
woonvorm.8,
woning.8,
sted.8,
belbezig.8,
brutoink.8,
nettoink.8,
brutocat.8,
nettocat.8,
oplzon.8,
oplmet.8,
oplcat.8,
nohouse_encr.8,
geslacht.9,
positie.9,
gebjaar.9,
leeftijd.9,
lftdcat.9,
aantalhh.9,
aantalki.9,
partner.9,
burgstat.9,
woonvorm.9,
woning.9,
sted.9,
belbezig.9,
brutoink.9,
nettoink.9,
brutocat.9,
nettocat.9,
oplzon.9,
oplmet.9,
oplcat.9,
nohouse_encr.9,
geslacht.10,
positie.10,
gebjaar.10,
leeftijd.10,
lftdcat.10,
aantalhh.10,
aantalki.10,
partner.10,
burgstat.10,
woonvorm.10,
woning.10,
sted.10,
belbezig.10,
brutoink.10,
nettoink.10,
brutocat.10,
nettocat.10,
oplzon.10,
oplmet.10,
oplcat.10,
nohouse_encr.10,
geslacht.11,
positie.11,
gebjaar.11,
leeftijd.11,
lftdcat.11,
aantalhh.11,
aantalki.11,
partner.11,
burgstat.11,
woonvorm.11,
woning.11,
sted.11,
belbezig.11,
brutoink.11,
nettoink.11,
brutocat.11,
nettocat.11,
oplzon.11,
oplmet.11,
oplcat.11,
nohouse_encr.11
)
#get the background data and rename the columns.
#For the first three waves there are is no data on this variable
liss_origin <- liss_subset %>%
select(
nomem_encr,
herkomstgroep.4,
herkomstgroep.5,
herkomstgroep.6,
herkomstgroep.7,
herkomstgroep.8,
herkomstgroep.9,
herkomstgroep.10,
herkomstgroep.11
)
names(liss_origin) <-
c(
"nomem_encr",
"origin.4",
"origin.5",
"origin.6",
"origin.7",
"origin.8",
"origin.9",
"origin.10",
"origin.11"
)
#create ego origin 1-3 with NA's so we can later merge them into a long file.
liss_origin$origin.1 <- NA
liss_origin$origin.2 <- NA
liss_origin$origin.3 <- NA
#For some reason the reshape command bugs when the ordering is not correct.
liss_origin <- liss_origin[, c(1, 10:12, 2:9)]
#alter ids
liss_alter_id <- liss_subset %>%
select(
nomem_encr,
name1_rec.1,
name2_rec.1,
name3_rec.1,
name4_rec.1,
name5_rec.1,
name1_rec.2,
name2_rec.2,
name3_rec.2,
name4_rec.2,
name5_rec.2,
name1_rec.3,
name2_rec.3,
name3_rec.3,
name4_rec.3,
name5_rec.3,
name1_rec.4,
name2_rec.4,
name3_rec.4,
name4_rec.4,
name5_rec.4,
name1_rec.5,
name2_rec.5,
name3_rec.5,
name4_rec.5,
name5_rec.5,
name1_rec.6,
name2_rec.6,
name3_rec.6,
name4_rec.6,
name5_rec.6,
name1_rec.7,
name2_rec.7,
name3_rec.7,
name4_rec.7,
name5_rec.7,
name1_rec.8,
name2_rec.8,
name3_rec.8,
name4_rec.8,
name5_rec.8,
name1_rec.9,
name2_rec.9,
name3_rec.9,
name4_rec.9,
name5_rec.9,
name1_rec.10,
name2_rec.10,
name3_rec.10,
name4_rec.10,
name5_rec.10,
name1_rec.11,
name2_rec.11,
name3_rec.11,
name4_rec.11,
name5_rec.11
)
#rename the alter id's
names(liss_alter_id) <-
c(
"nomem_encr",
"alter_id_1.1",
"alter_id_2.1",
"alter_id_3.1",
"alter_id_4.1",
"alter_id_5.1",
"alter_id_1.2",
"alter_id_2.2",
"alter_id_3.2",
"alter_id_4.2",
"alter_id_5.2",
"alter_id_1.3",
"alter_id_2.3",
"alter_id_3.3",
"alter_id_4.3",
"alter_id_5.3",
"alter_id_1.4",
"alter_id_2.4",
"alter_id_3.4",
"alter_id_4.4",
"alter_id_5.4",
"alter_id_1.5",
"alter_id_2.5",
"alter_id_3.5",
"alter_id_4.5",
"alter_id_5.5",
"alter_id_1.6",
"alter_id_2.6",
"alter_id_3.6",
"alter_id_4.6",
"alter_id_5.6",
"alter_id_1.7",
"alter_id_2.7",
"alter_id_3.7",
"alter_id_4.7",
"alter_id_5.7",
"alter_id_1.8",
"alter_id_2.8",
"alter_id_3.8",
"alter_id_4.8",
"alter_id_5.8",
"alter_id_1.9",
"alter_id_2.9",
"alter_id_3.9",
"alter_id_4.9",
"alter_id_5.9",
"alter_id_1.10",
"alter_id_2.10",
"alter_id_3.10",
"alter_id_4.10",
"alter_id_5.10",
"alter_id_1.11",
"alter_id_2.11",
"alter_id_3.11",
"alter_id_4.11",
"alter_id_5.11"
)
#extract the alter variables and rename them.
#renaming the alter variables.
#selecting the alter data.
liss_alters <- liss %>%
select(
nomem_encr,
cs08a326,
cs08a315,
cs08a320,
cs08a328,
cs08a329,
cs08a324,
cs08a323,
cs08a321,
cs08a300,
cs08a327,
cs08a337,
cs08a316,
cs08a331,
cs08a339,
cs08a340,
cs08a335,
cs08a334,
cs08a332,
cs08a301,
cs08a338,
cs08a348,
cs08a317,
cs08a342,
cs08a350,
cs08a351,
cs08a346,
cs08a345,
cs08a343,
cs08a302,
cs08a349,
cs08a359,
cs08a318,
cs08a353,
cs08a361,
cs08a362,
cs08a357,
cs08a356,
cs08a354,
cs08a303,
cs08a360,
cs08a370,
cs08a319,
cs08a364,
cs08a372,
cs08a373,
cs08a368,
cs08a367,
cs08a365,
cs08a304,
cs08a371,
cs09b326,
cs09b315,
cs09b320,
cs09b328,
cs09b329,
cs09b324,
cs09b323,
cs09b321,
cs09b300,
cs09b327,
cs09b337,
cs09b316,
cs09b331,
cs09b339,
cs09b340,
cs09b335,
cs09b334,
cs09b332,
cs09b301,
cs09b338,
cs09b348,
cs09b317,
cs09b342,
cs09b350,
cs09b351,
cs09b346,
cs09b345,
cs09b343,
cs09b302,
cs09b349,
cs09b359,
cs09b318,
cs09b353,
cs09b361,
cs09b362,
cs09b357,
cs09b356,
cs09b354,
cs09b303,
cs09b360,
cs09b370,
cs09b319,
cs09b364,
cs09b372,
cs09b373,
cs09b368,
cs09b367,
cs09b365,
cs09b304,
cs09b371,
cs10c326,
cs10c315,
cs10c320,
cs10c328,
cs10c329,
cs10c324,
cs10c323,
cs10c321,
cs10c300,
cs10c327,
cs10c337,
cs10c316,
cs10c331,
cs10c339,
cs10c340,
cs10c335,
cs10c334,
cs10c332,
cs10c301,
cs10c338,
cs10c348,
cs10c317,
cs10c342,
cs10c350,
cs10c351,
cs10c346,
cs10c345,
cs10c343,
cs10c302,
cs10c349,
cs10c359,
cs10c318,
cs10c353,
cs10c361,
cs10c362,
cs10c357,
cs10c356,
cs10c354,
cs10c303,
cs10c360,
cs10c370,
cs10c319,
cs10c364,
cs10c372,
cs10c373,
cs10c368,
cs10c367,
cs10c365,
cs10c304,
cs10c371,
cs11d326,
cs11d315,
cs11d320,
cs11d328,
cs11d329,
cs11d324,
cs11d323,
cs11d321,
cs11d300,
cs11d327,
cs11d337,
cs11d316,
cs11d331,
cs11d339,
cs11d340,
cs11d335,
cs11d334,
cs11d332,
cs11d301,
cs11d338,
cs11d348,
cs11d317,
cs11d342,
cs11d350,
cs11d351,
cs11d346,
cs11d345,
cs11d343,
cs11d302,
cs11d349,
cs11d359,
cs11d318,
cs11d353,
cs11d361,
cs11d362,
cs11d357,
cs11d356,
cs11d354,
cs11d303,
cs11d360,
cs11d370,
cs11d319,
cs11d364,
cs11d372,
cs11d373,
cs11d368,
cs11d367,
cs11d365,
cs11d304,
cs11d371,
cs12e326,
cs12e315,
cs12e320,
cs12e328,
cs12e329,
cs12e324,
cs12e323,
cs12e321,
cs12e300,
cs12e327,
cs12e337,
cs12e316,
cs12e331,
cs12e339,
cs12e340,
cs12e335,
cs12e334,
cs12e332,
cs12e301,
cs12e338,
cs12e348,
cs12e317,
cs12e342,
cs12e350,
cs12e351,
cs12e346,
cs12e345,
cs12e343,
cs12e302,
cs12e349,
cs12e359,
cs12e318,
cs12e353,
cs12e361,
cs12e362,
cs12e357,
cs12e356,
cs12e354,
cs12e303,
cs12e360,
cs12e370,
cs12e319,
cs12e364,
cs12e372,
cs12e373,
cs12e368,
cs12e367,
cs12e365,
cs12e304,
cs12e371,
cs13f326,
cs13f315,
cs13f320,
cs13f328,
cs13f329,
cs13f324,
cs13f323,
cs13f321,
cs13f300,
cs13f327,
cs13f337,
cs13f316,
cs13f331,
cs13f339,
cs13f340,
cs13f335,
cs13f334,
cs13f332,
cs13f301,
cs13f338,
cs13f348,
cs13f317,
cs13f342,
cs13f350,
cs13f351,
cs13f346,
cs13f345,
cs13f343,
cs13f302,
cs13f349,
cs13f359,
cs13f318,
cs13f353,
cs13f361,
cs13f362,
cs13f357,
cs13f356,
cs13f354,
cs13f303,
cs13f360,
cs13f370,
cs13f319,
cs13f364,
cs13f372,
cs13f373,
cs13f368,
cs13f367,
cs13f365,
cs13f304,
cs13f371,
cs14g326,
cs14g315,
cs14g320,
cs14g328,
cs14g329,
cs14g324,
cs14g323,
cs14g321,
cs14g300,
cs14g327,
cs14g337,
cs14g316,
cs14g331,
cs14g339,
cs14g340,
cs14g335,
cs14g334,
cs14g332,
cs14g301,
cs14g338,
cs14g348,
cs14g317,
cs14g342,
cs14g350,
cs14g351,
cs14g346,
cs14g345,
cs14g343,
cs14g302,
cs14g349,
cs14g359,
cs14g318,
cs14g353,
cs14g361,
cs14g362,
cs14g357,
cs14g356,
cs14g354,
cs14g303,
cs14g360,
cs14g370,
cs14g319,
cs14g364,
cs14g372,
cs14g373,
cs14g368,
cs14g367,
cs14g365,
cs14g304,
cs14g371,
cs15h326,
cs15h315,
cs15h320,
cs15h328,
cs15h329,
cs15h324,
cs15h323,
cs15h321,
cs15h300,
cs15h327,
cs15h337,
cs15h316,
cs15h331,
cs15h339,
cs15h340,
cs15h335,
cs15h334,
cs15h332,
cs15h301,
cs15h338,
cs15h348,
cs15h317,
cs15h342,
cs15h350,
cs15h351,
cs15h346,
cs15h345,
cs15h343,
cs15h302,
cs15h349,
cs15h359,
cs15h318,
cs15h353,
cs15h361,
cs15h362,
cs15h357,
cs15h356,
cs15h354,
cs15h303,
cs15h360,
cs15h370,
cs15h319,
cs15h364,
cs15h372,
cs15h373,
cs15h368,
cs15h367,
cs15h365,
cs15h304,
cs15h371,
cs16i326,
cs16i315,
cs16i320,
cs16i328,
cs16i329,
cs16i324,
cs16i323,
cs16i321,
cs16i300,
cs16i327,
cs16i337,
cs16i316,
cs16i331,
cs16i339,
cs16i340,
cs16i335,
cs16i334,
cs16i332,
cs16i301,
cs16i338,
cs16i348,
cs16i317,
cs16i342,
cs16i350,
cs16i351,
cs16i346,
cs16i345,
cs16i343,
cs16i302,
cs16i349,
cs16i359,
cs16i318,
cs16i353,
cs16i361,
cs16i362,
cs16i357,
cs16i356,
cs16i354,
cs16i303,
cs16i360,
cs16i370,
cs16i319,
cs16i364,
cs16i372,
cs16i373,
cs16i368,
cs16i367,
cs16i365,
cs16i304,
cs16i371,
cs17j326,
cs17j315,
cs17j320,
cs17j328,
cs17j329,
cs17j324,
cs17j323,
cs17j321,
cs17j300,
cs17j327,
cs17j337,
cs17j316,
cs17j331,
cs17j339,
cs17j340,
cs17j335,
cs17j334,
cs17j332,
cs17j301,
cs17j338,
cs17j348,
cs17j317,
cs17j342,
cs17j350,
cs17j351,
cs17j346,
cs17j345,
cs17j343,
cs17j302,
cs17j349,
cs17j359,
cs17j318,
cs17j353,
cs17j361,
cs17j362,
cs17j357,
cs17j356,
cs17j354,
cs17j303,
cs17j360,
cs17j370,
cs17j319,
cs17j364,
cs17j372,
cs17j373,
cs17j368,
cs17j367,
cs17j365,
cs17j304,
cs17j371,
cs18k326,
cs18k315,
cs18k320,
cs18k328,
cs18k329,
cs18k324,
cs18k323,
cs18k321,
cs18k300,
cs18k327,
cs18k337,
cs18k316,
cs18k331,
cs18k339,
cs18k340,
cs18k335,
cs18k334,
cs18k332,
cs18k301,
cs18k338,
cs18k348,
cs18k317,
cs18k342,
cs18k350,
cs18k351,
cs18k346,
cs18k345,
cs18k343,
cs18k302,
cs18k349,
cs18k359,
cs18k318,
cs18k353,
cs18k361,
cs18k362,
cs18k357,
cs18k356,
cs18k354,
cs18k303,
cs18k360,
cs18k370,
cs18k319,
cs18k364,
cs18k372,
cs18k373,
cs18k368,
cs18k367,
cs18k365,
cs18k304,
cs18k371,
cs08a305,
cs08a306,
cs08a307,
cs08a308,
cs08a309,
cs08a310,
cs08a311,
cs08a312,
cs08a313,
cs08a314,
cs09b305,
cs09b306,
cs09b307,
cs09b308,
cs09b309,
cs09b310,
cs09b311,
cs09b312,
cs09b313,
cs09b314,
cs10c305,
cs10c306,
cs10c307,
cs10c308,
cs10c309,
cs10c310,
cs10c311,
cs10c312,
cs10c313,
cs10c314,
cs11d305,
cs11d306,
cs11d307,
cs11d308,
cs11d309,
cs11d310,
cs11d311,
cs11d312,
cs11d313,
cs11d314,
cs12e305,
cs12e306,
cs12e307,
cs12e308,
cs12e309,
cs12e310,
cs12e311,
cs12e312,
cs12e313,
cs12e314,
cs13f305,
cs13f306,
cs13f307,
cs13f308,
cs13f309,
cs13f310,
cs13f311,
cs13f312,
cs13f313,
cs13f314,
cs14g305,
cs14g306,
cs14g307,
cs14g308,
cs14g309,
cs14g310,
cs14g311,
cs14g312,
cs14g313,
cs14g314,
cs15h305,
cs15h306,
cs15h307,
cs15h308,
cs15h309,
cs15h310,
cs15h311,
cs15h312,
cs15h313,
cs15h314,
cs16i305,
cs16i306,
cs16i307,
cs16i308,
cs16i309,
cs16i310,
cs16i311,
cs16i312,
cs16i313,
cs16i314,
cs17j305,
cs17j306,
cs17j307,
cs17j308,
cs17j309,
cs17j310,
cs17j311,
cs17j312,
cs17j313,
cs17j314,
cs18k305,
cs18k306,
cs18k307,
cs18k308,
cs18k309,
cs18k310,
cs18k311,
cs18k312,
cs18k313,
cs18k314,
cs08a325,
cs08a336,
cs08a347,
cs08a358,
cs08a369,
cs09b325,
cs09b336,
cs09b347,
cs09b358,
cs09b369,
cs10c325,
cs10c336,
cs10c347,
cs10c358,
cs10c369,
cs11d325,
cs11d336,
cs11d347,
cs11d358,
cs11d369,
cs12e325,
cs12e336,
cs12e347,
cs12e358,
cs12e369,
cs13f325,
cs13f336,
cs13f347,
cs13f358,
cs13f369,
cs14g325,
cs14g336,
cs14g347,
cs14g358,
cs14g369,
cs15h325,
cs15h336,
cs15h347,
cs15h358,
cs15h369,
cs16i325,
cs16i336,
cs16i347,
cs16i358,
cs16i369,
cs17j325,
cs17j336,
cs17j347,
cs17j358,
cs17j369,
cs18k325,
cs18k336,
cs18k347,
cs18k358,
cs18k369,
cs08a_m,
cs09b_m,
cs10c_m,
cs11d_m,
cs12e_m,
cs13f_m,
cs14g_m,
cs15h_m,
cs16i_m,
cs17j_m,
cs18k_m
)
#Rename the alter variables.
names(liss_alters) <-
c(
"nomem_encr",
"educ_alter1.1",
"gender_alter1.1",
"origin_alter1.1",
"prof_alter1.1",
"age_alter1.1",
"poltalk_alter1.1",
"talk_alter1.1",
"rel_alter1.1",
"dear_alter1.1",
"work_a1.1",
"educ_alter2.1",
"gender_alter2.1",
"origin_alter2.1",
"prof_alter2.1",
"age_alter2.1",
"poltalk_alter2.1",
"talk_alter2.1",
"rel_alter2.1",
"dear_alter2.1",
"work_a2.1",
"educ_alter3.1",
"gender_alter3.1",
"origin_alter3.1",
"prof_alter3.1",
"age_alter3.1",
"poltalk_alter3.1",
"talk_alter3.1",
"rel_alter3.1",
"dear_alter3.1",
"work_a3.1",
"educ_alter4.1",
"gender_alter4.1",
"origin_alter4.1",
"prof_alter4.1",
"age_alter4.1",
"poltalk_alter4.1",
"talk_alter4.1",
"rel_alter4.1",
"dear_alter4.1",
"work_a4.1",
"educ_alter5.1",
"gender_alter5.1",
"origin_alter5.1",
"prof_alter5.1",
"age_alter5.1",
"poltalk_alter5.1",
"talk_alter5.1",
"rel_alter5.1",
"dear_alter5.1",
"work_a5.1",
"educ_alter1.2",
"gender_alter1.2",
"origin_alter1.2",
"prof_alter1.2",
"age_alter1.2",
"poltalk_alter1.2",
"talk_alter1.2",
"rel_alter1.2",
"dear_alter1.2",
"work_a1.2",
"educ_alter2.2",
"gender_alter2.2",
"origin_alter2.2",
"prof_alter2.2",
"age_alter2.2",
"poltalk_alter2.2",
"talk_alter2.2",
"rel_alter2.2",
"dear_alter2.2",
"work_a2.2",
"educ_alter3.2",
"gender_alter3.2",
"origin_alter3.2",
"prof_alter3.2",
"age_alter3.2",
"poltalk_alter3.2",
"talk_alter3.2",
"rel_alter3.2",
"dear_alter3.2",
"work_a3.2",
"educ_alter4.2",
"gender_alter4.2",
"origin_alter4.2",
"prof_alter4.2",
"age_alter4.2",
"poltalk_alter4.2",
"talk_alter4.2",
"rel_alter4.2",
"dear_alter4.2",
"work_a4.2",
"educ_alter5.2",
"gender_alter5.2",
"origin_alter5.2",
"prof_alter5.2",
"age_alter5.2",
"poltalk_alter5.2",
"talk_alter5.2",
"rel_alter5.2",
"dear_alter5.2",
"work_a5.2",
"educ_alter1.3",
"gender_alter1.3",
"origin_alter1.3",
"prof_alter1.3",
"age_alter1.3",
"poltalk_alter1.3",
"talk_alter1.3",
"rel_alter1.3",
"dear_alter1.3",
"work_a1.3",
"educ_alter2.3",
"gender_alter2.3",
"origin_alter2.3",
"prof_alter2.3",
"age_alter2.3",
"poltalk_alter2.3",
"talk_alter2.3",
"rel_alter2.3",
"dear_alter2.3",
"work_a2.3",
"educ_alter3.3",
"gender_alter3.3",
"origin_alter3.3",
"prof_alter3.3",
"age_alter3.3",
"poltalk_alter3.3",
"talk_alter3.3",
"rel_alter3.3",
"dear_alter3.3",
"work_a3.3",
"educ_alter4.3",
"gender_alter4.3",
"origin_alter4.3",
"prof_alter4.3",
"age_alter4.3",
"poltalk_alter4.3",
"talk_alter4.3",
"rel_alter4.3",
"dear_alter4.3",
"work_a4.3",
"educ_alter5.3",
"gender_alter5.3",
"origin_alter5.3",
"prof_alter5.3",
"age_alter5.3",
"poltalk_alter5.3",
"talk_alter5.3",
"rel_alter5.3",
"dear_alter5.3",
"work_a5.3",
"educ_alter1.4",
"gender_alter1.4",
"origin_alter1.4",
"prof_alter1.4",
"age_alter1.4",
"poltalk_alter1.4",
"talk_alter1.4",
"rel_alter1.4",
"dear_alter1.4",
"work_a1.4",
"educ_alter2.4",
"gender_alter2.4",
"origin_alter2.4",
"prof_alter2.4",
"age_alter2.4",
"poltalk_alter2.4",
"talk_alter2.4",
"rel_alter2.4",
"dear_alter2.4",
"work_a2.4",
"educ_alter3.4",
"gender_alter3.4",
"origin_alter3.4",
"prof_alter3.4",
"age_alter3.4",
"poltalk_alter3.4",
"talk_alter3.4",
"rel_alter3.4",
"dear_alter3.4",
"work_a3.4",
"educ_alter4.4",
"gender_alter4.4",
"origin_alter4.4",
"prof_alter4.4",
"age_alter4.4",
"poltalk_alter4.4",
"talk_alter4.4",
"rel_alter4.4",
"dear_alter4.4",
"work_a4.4",
"educ_alter5.4",
"gender_alter5.4",
"origin_alter5.4",
"prof_alter5.4",
"age_alter5.4",
"poltalk_alter5.4",
"talk_alter5.4",
"rel_alter5.4",
"dear_alter5.4",
"work_a5.4",
"educ_alter1.5",
"gender_alter1.5",
"origin_alter1.5",
"prof_alter1.5",
"age_alter1.5",
"poltalk_alter1.5",
"talk_alter1.5",
"rel_alter1.5",
"dear_alter1.5",
"work_a1.5",
"educ_alter2.5",
"gender_alter2.5",
"origin_alter2.5",
"prof_alter2.5",
"age_alter2.5",
"poltalk_alter2.5",
"talk_alter2.5",
"rel_alter2.5",
"dear_alter2.5",
"work_a2.5",
"educ_alter3.5",
"gender_alter3.5",
"origin_alter3.5",
"prof_alter3.5",
"age_alter3.5",
"poltalk_alter3.5",
"talk_alter3.5",
"rel_alter3.5",
"dear_alter3.5",
"work_a3.5",
"educ_alter4.5",
"gender_alter4.5",
"origin_alter4.5",
"prof_alter4.5",
"age_alter4.5",
"poltalk_alter4.5",
"talk_alter4.5",
"rel_alter4.5",
"dear_alter4.5",
"work_a4.5",
"educ_alter5.5",
"gender_alter5.5",
"origin_alter5.5",
"prof_alter5.5",
"age_alter5.5",
"poltalk_alter5.5",
"talk_alter5.5",
"rel_alter5.5",
"dear_alter5.5",
"work_a5.5",
"educ_alter1.6",
"gender_alter1.6",
"origin_alter1.6",
"prof_alter1.6",
"age_alter1.6",
"poltalk_alter1.6",
"talk_alter1.6",
"rel_alter1.6",
"dear_alter1.6",
"work_a1.6",
"educ_alter2.6",
"gender_alter2.6",
"origin_alter2.6",
"prof_alter2.6",
"age_alter2.6",
"poltalk_alter2.6",
"talk_alter2.6",
"rel_alter2.6",
"dear_alter2.6",
"work_a2.6",
"educ_alter3.6",
"gender_alter3.6",
"origin_alter3.6",
"prof_alter3.6",
"age_alter3.6",
"poltalk_alter3.6",
"talk_alter3.6",
"rel_alter3.6",
"dear_alter3.6",
"work_a3.6",
"educ_alter4.6",
"gender_alter4.6",
"origin_alter4.6",
"prof_alter4.6",
"age_alter4.6",
"poltalk_alter4.6",
"talk_alter4.6",
"rel_alter4.6",
"dear_alter4.6",
"work_a4.6",
"educ_alter5.6",
"gender_alter5.6",
"origin_alter5.6",
"prof_alter5.6",
"age_alter5.6",
"poltalk_alter5.6",
"talk_alter5.6",
"rel_alter5.6",
"dear_alter5.6",
"work_a5.6",
"educ_alter1.7",
"gender_alter1.7",
"origin_alter1.7",
"prof_alter1.7",
"age_alter1.7",
"poltalk_alter1.7",
"talk_alter1.7",
"rel_alter1.7",
"dear_alter1.7",
"work_a1.7",
"educ_alter2.7",
"gender_alter2.7",
"origin_alter2.7",
"prof_alter2.7",
"age_alter2.7",
"poltalk_alter2.7",
"talk_alter2.7",
"rel_alter2.7",
"dear_alter2.7",
"work_a2.7",
"educ_alter3.7",
"gender_alter3.7",
"origin_alter3.7",
"prof_alter3.7",
"age_alter3.7",
"poltalk_alter3.7",
"talk_alter3.7",
"rel_alter3.7",
"dear_alter3.7",
"work_a3.7",
"educ_alter4.7",
"gender_alter4.7",
"origin_alter4.7",
"prof_alter4.7",
"age_alter4.7",
"poltalk_alter4.7",
"talk_alter4.7",
"rel_alter4.7",
"dear_alter4.7",
"work_a4.7",
"educ_alter5.7",
"gender_alter5.7",
"origin_alter5.7",
"prof_alter5.7",
"age_alter5.7",
"poltalk_alter5.7",
"talk_alter5.7",
"rel_alter5.7",
"dear_alter5.7",
"work_a5.7",
"educ_alter1.8",
"gender_alter1.8",
"origin_alter1.8",
"prof_alter1.8",
"age_alter1.8",
"poltalk_alter1.8",
"talk_alter1.8",
"rel_alter1.8",
"dear_alter1.8",
"work_a1.8",
"educ_alter2.8",
"gender_alter2.8",
"origin_alter2.8",
"prof_alter2.8",
"age_alter2.8",
"poltalk_alter2.8",
"talk_alter2.8",
"rel_alter2.8",
"dear_alter2.8",
"work_a2.8",
"educ_alter3.8",
"gender_alter3.8",
"origin_alter3.8",
"prof_alter3.8",
"age_alter3.8",
"poltalk_alter3.8",
"talk_alter3.8",
"rel_alter3.8",
"dear_alter3.8",
"work_a3.8",
"educ_alter4.8",
"gender_alter4.8",
"origin_alter4.8",
"prof_alter4.8",
"age_alter4.8",
"poltalk_alter4.8",
"talk_alter4.8",
"rel_alter4.8",
"dear_alter4.8",
"work_a4.8",
"educ_alter5.8",
"gender_alter5.8",
"origin_alter5.8",
"prof_alter5.8",
"age_alter5.8",
"poltalk_alter5.8",
"talk_alter5.8",
"rel_alter5.8",
"dear_alter5.8",
"work_a5.8",
"educ_alter1.9",
"gender_alter1.9",
"origin_alter1.9",
"prof_alter1.9",
"age_alter1.9",
"poltalk_alter1.9",
"talk_alter1.9",
"rel_alter1.9",
"dear_alter1.9",
"work_a1.9",
"educ_alter2.9",
"gender_alter2.9",
"origin_alter2.9",
"prof_alter2.9",
"age_alter2.9",
"poltalk_alter2.9",
"talk_alter2.9",
"rel_alter2.9",
"dear_alter2.9",
"work_a2.9",
"educ_alter3.9",
"gender_alter3.9",
"origin_alter3.9",
"prof_alter3.9",
"age_alter3.9",
"poltalk_alter3.9",
"talk_alter3.9",
"rel_alter3.9",
"dear_alter3.9",
"work_a3.9",
"educ_alter4.9",
"gender_alter4.9",
"origin_alter4.9",
"prof_alter4.9",
"age_alter4.9",
"poltalk_alter4.9",
"talk_alter4.9",
"rel_alter4.9",
"dear_alter4.9",
"work_a4.9",
"educ_alter5.9",
"gender_alter5.9",
"origin_alter5.9",
"prof_alter5.9",
"age_alter5.9",
"poltalk_alter5.9",
"talk_alter5.9",
"rel_alter5.9",
"dear_alter5.9",
"work_a5.9",
"educ_alter1.10",
"gender_alter1.10",
"origin_alter1.10",
"prof_alter1.10",
"age_alter1.10",
"poltalk_alter1.10",
"talk_alter1.10",
"rel_alter1.10",
"dear_alter1.10",
"work_a1.10",
"educ_alter2.10",
"gender_alter2.10",
"origin_alter2.10",
"prof_alter2.10",
"age_alter2.10",
"poltalk_alter2.10",
"talk_alter2.10",
"rel_alter2.10",
"dear_alter2.10",
"work_a2.10",
"educ_alter3.10",
"gender_alter3.10",
"origin_alter3.10",
"prof_alter3.10",
"age_alter3.10",
"poltalk_alter3.10",
"talk_alter3.10",
"rel_alter3.10",
"dear_alter3.10",
"work_a3.10",
"educ_alter4.10",
"gender_alter4.10",
"origin_alter4.10",
"prof_alter4.10",
"age_alter4.10",
"poltalk_alter4.10",
"talk_alter4.10",
"rel_alter4.10",
"dear_alter4.10",
"work_a4.10",
"educ_alter5.10",
"gender_alter5.10",
"origin_alter5.10",
"prof_alter5.10",
"age_alter5.10",
"poltalk_alter5.10",
"talk_alter5.10",
"rel_alter5.10",
"dear_alter5.10",
"work_a5.10",
"educ_alter1.11",
"gender_alter1.11",
"origin_alter1.11",
"prof_alter1.11",
"age_alter1.11",
"poltalk_alter1.11",
"talk_alter1.11",
"rel_alter1.11",
"dear_alter1.11",
"work_a1.11",
"educ_alter2.11",
"gender_alter2.11",
"origin_alter2.11",
"prof_alter2.11",
"age_alter2.11",
"poltalk_alter2.11",
"talk_alter2.11",
"rel_alter2.11",
"dear_alter2.11",
"work_a2.11",
"educ_alter3.11",
"gender_alter3.11",
"origin_alter3.11",
"prof_alter3.11",
"age_alter3.11",
"poltalk_alter3.11",
"talk_alter3.11",
"rel_alter3.11",
"dear_alter3.11",
"work_a3.11",
"educ_alter4.11",
"gender_alter4.11",
"origin_alter4.11",
"prof_alter4.11",
"age_alter4.11",
"poltalk_alter4.11",
"talk_alter4.11",
"rel_alter4.11",
"dear_alter4.11",
"work_a4.11",
"educ_alter5.11",
"gender_alter5.11",
"origin_alter5.11",
"prof_alter5.11",
"age_alter5.11",
"poltalk_alter5.11",
"talk_alter5.11",
"rel_alter5.11",
"dear_alter5.11",
"work_a5.11",
"close_12.1",
"close_13.1",
"close_14.1",
"close_15.1",
"close_23.1",
"close_24.1",
"close_25.1",
"close_34.1",
"close_35.1",
"close_45.1",
"close_12.2",
"close_13.2",
"close_14.2",
"close_15.2",
"close_23.2",
"close_24.2",
"close_25.2",
"close_34.2",
"close_35.2",
"close_45.2",
"close_12.3",
"close_13.3",
"close_14.3",
"close_15.3",
"close_23.3",
"close_24.3",
"close_25.3",
"close_34.3",
"close_35.3",
"close_45.3",
"close_12.4",
"close_13.4",
"close_14.4",
"close_15.4",
"close_23.4",
"close_24.4",
"close_25.4",
"close_34.4",
"close_35.4",
"close_45.4",
"close_12.5",
"close_13.5",
"close_14.5",
"close_15.5",
"close_23.5",
"close_24.5",
"close_25.5",
"close_34.5",
"close_35.5",
"close_45.5",
"close_12.6",
"close_13.6",
"close_14.6",
"close_15.6",
"close_23.6",
"close_24.6",
"close_25.6",
"close_34.6",
"close_35.6",
"close_45.6",
"close_12.7",
"close_13.7",
"close_14.7",
"close_15.7",
"close_23.7",
"close_24.7",
"close_25.7",
"close_34.7",
"close_35.7",
"close_45.7",
"close_12.8",
"close_13.8",
"close_14.8",
"close_15.8",
"close_23.8",
"close_24.8",
"close_25.8",
"close_34.8",
"close_35.8",
"close_45.8",
"close_12.9",
"close_13.9",
"close_14.9",
"close_15.9",
"close_23.9",
"close_24.9",
"close_25.9",
"close_34.9",
"close_35.9",
"close_45.9",
"close_12.10",
"close_13.10",
"close_14.10",
"close_15.10",
"close_23.10",
"close_24.10",
"close_25.10",
"close_34.10",
"close_35.10",
"close_45.10",
"close_12.11",
"close_13.11",
"close_14.11",
"close_15.11",
"close_23.11",
"close_24.11",
"close_25.11",
"close_34.11",
"close_35.11",
"close_45.11",
"length_1.1",
"length_2.1",
"length_3.1",
"length_4.1",
"length_5.1",
"length_1.2",
"length_2.2",
"length_3.2",
"length_4.2",
"length_5.2",
"length_1.3",
"length_2.3",
"length_3.3",
"length_4.3",
"length_5.3",
"length_1.4",
"length_2.4",
"length_3.4",
"length_4.4",
"length_5.4",
"length_1.5",
"length_2.5",
"length_3.5",
"length_4.5",
"length_5.5",
"length_1.6",
"length_2.6",
"length_3.6",
"length_4.6",
"length_5.6",
"length_1.7",
"length_2.7",
"length_3.7",
"length_4.7",
"length_5.7",
"length_1.8",
"length_2.8",
"length_3.8",
"length_4.8",
"length_5.8",
"length_1.9",
"length_2.9",
"length_3.9",
"length_4.9",
"length_5.9",
"length_1.10",
"length_2.10",
"length_3.10",
"length_4.10",
"length_5.10",
"length_1.11",
"length_2.11",
"length_3.11",
"length_4.11",
"length_5.11",
"leisure_part.1",
"leisure_part.2",
"leisure_part.3",
"leisure_part.4",
"leisure_part.5",
"leisure_part.6",
"leisure_part.7",
"leisure_part.8",
"leisure_part.9",
"leisure_part.10",
"leisure_part.11"
)
Combine all modules into one datafile.
#combine the different data sources into one wide data file.
liss_wide <- liss_pol %>%
left_join(liss_alters, by = "nomem_encr") %>%
left_join(liss_alter_id, by = "nomem_encr") %>%
left_join(liss_origin, by = "nomem_encr") %>%
left_join(liss_avars, by = "nomem_encr")
#remove all labels
liss_wide <- sjlabelled::remove_all_labels(liss_wide)
Pivot data in long format and export data.
#--------------------------- Reshape to long file. -------------------------#
#create a long file.
liss_long <- liss_wide %>%
pivot_longer(cols = 2:1398,
names_to = c("measure", "survey_wave"),
names_pattern = "(.+)\\.(.+)",
values_to = "value") %>%
pivot_wider(names_from = measure,
values_from = value) %>%
mutate(survey_wave = as.numeric(survey_wave))
#clean the environment.
rm(list=ls()[! ls() %in% c("liss_wide", "liss_long")])
#save RData.
save.image("data/data-processed/liss_merged/liss_core_merged_V3_240624.Rdata")
Copyright © 2024 Jeroense Thijmen